On Matrices with Signed Null-Spaces

نویسندگان

  • Si-Ju Kim
  • Bryan L. Shader
  • Suk-Geun Hwang
چکیده

We denote by Q(A) the set of all matrices with the same sign pattern as A. A matrix A has signed null-space provided there exists a set S of sign patterns such that the set of sign patterns of vectors in the null-space of à is S for each à ∈ Q(A). Some properties of matrices with signed null-spaces are investigated.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Some properties of matrices with signed null spaces

A matrix A is said to have signed null space provided there exists a set S of sign patterns such that the set of sign patterns of vectors in the null space of à is S for each Ã∈Q(A). It is a generalization of a number of important qualitative matrix classes such as L-matrices, S∗-matrices, totally L-matrices, etc. In this paper, we obtain some new characterizations for matrices with signed null...

متن کامل

Double-null operators and the investigation of Birkhoff's theorem on discrete lp spaces

Doubly stochastic matrices play a fundamental role in the theory of majorization. Birkhoff's theorem explains the relation between $ntimes n$ doubly stochastic matrices and permutations. In this paper, we first introduce double-null  operators and we will find some important properties of them. Then with the help of double-null operators, we investigate Birkhoff's theorem for descreate $l^p$ sp...

متن کامل

Combinatorial characterization of the null spaces of symmetric H-matrices

We characterize the structure of null spaces of symmetric diagonally dominant (SDD) matrices and symmetric H-matrices with non-negative diagonal entries. We show that the structure of the null space of a symmetric SDD matrix or H-matrix A depends on the structure of the connected components of its underlying graph. Each connected component contributes at most one vector to the null space. This ...

متن کامل

Asymptotic expansion of the expected spectral measure of Wigner matrices

We compute an asymptotic expansion with precision 1/n of the moments of the expected empirical spectral measure of Wigner matrices of size n with independent centered entries. We interpret this expansion as the moments of the addition of the semicircle law and 1/n times an explicit signed measured with null total mass. This signed measure depends only on the second and fourth moments of the ent...

متن کامل

Gyrovector Spaces on the Open Convex Cone of Positive Definite Matrices

‎In this article we review an algebraic definition of the gyrogroup and a simplified version of the gyrovector space with two fundamental examples on the open ball of finite-dimensional Euclidean spaces‎, ‎which are the Einstein and M"{o}bius gyrovector spaces‎. ‎We introduce the structure of gyrovector space and the gyroline on the open convex cone of positive definite matrices and explore its...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • SIAM J. Matrix Analysis Applications

دوره 24  شماره 

صفحات  -

تاریخ انتشار 2002